p-group, metabelian, nilpotent (class 2), monomial
Aliases: C42.310C23, C4.1832+ 1+4, C4.1302- 1+4, C8⋊9D4⋊51C2, C8⋊6D4⋊49C2, C8⋊4Q8⋊49C2, C4⋊D4.33C4, C22⋊Q8.33C4, C4⋊C8.242C22, C42.240(C2×C4), (C2×C8).450C23, (C4×C8).349C22, (C2×C4).692C24, C42⋊2C2.7C4, C4.4D4.26C4, (C4×D4).66C22, C42.C2.26C4, (C4×Q8).63C22, C4⋊M4(2)⋊40C2, C42.6C4⋊57C2, C23.49(C22×C4), C8⋊C4.109C22, C2.39(Q8○M4(2)), C22⋊C8.151C22, C22.214(C23×C4), (C22×C4).952C23, (C2×C42).799C22, (C22×C8).456C22, C22.D4.14C4, C42.7C22⋊32C2, C42⋊C2.94C22, C42.6C22⋊35C2, (C2×M4(2)).255C22, C23.36C23.19C2, C2.50(C23.33C23), C4⋊C4.125(C2×C4), (C2×D4).147(C2×C4), C22⋊C4.27(C2×C4), (C2×C4).90(C22×C4), (C2×Q8).130(C2×C4), (C22×C4).370(C2×C4), SmallGroup(128,1727)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C42.310C23
G = < a,b,c,d,e | a4=b4=d2=e2=1, c2=b, ab=ba, ac=ca, dad=a-1, eae=ab2, bc=cb, bd=db, be=eb, dcd=b2c, ece=a2b2c, ede=a2d >
Subgroups: 252 in 173 conjugacy classes, 124 normal (40 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4×C8, C8⋊C4, C22⋊C8, C4⋊C8, C4⋊C8, C2×C42, C42⋊C2, C4×D4, C4×D4, C4×Q8, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C42.C2, C42⋊2C2, C22×C8, C2×M4(2), C2×M4(2), C4⋊M4(2), C42.6C22, C42.6C4, C42.7C22, C8⋊9D4, C8⋊6D4, C8⋊4Q8, C23.36C23, C42.310C23
Quotients: C1, C2, C4, C22, C2×C4, C23, C22×C4, C24, C23×C4, 2+ 1+4, 2- 1+4, C23.33C23, Q8○M4(2), C42.310C23
(1 39 51 46)(2 40 52 47)(3 33 53 48)(4 34 54 41)(5 35 55 42)(6 36 56 43)(7 37 49 44)(8 38 50 45)(9 30 58 20)(10 31 59 21)(11 32 60 22)(12 25 61 23)(13 26 62 24)(14 27 63 17)(15 28 64 18)(16 29 57 19)
(1 3 5 7)(2 4 6 8)(9 11 13 15)(10 12 14 16)(17 19 21 23)(18 20 22 24)(25 27 29 31)(26 28 30 32)(33 35 37 39)(34 36 38 40)(41 43 45 47)(42 44 46 48)(49 51 53 55)(50 52 54 56)(57 59 61 63)(58 60 62 64)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(2 6)(4 8)(9 62)(10 59)(11 64)(12 61)(13 58)(14 63)(15 60)(16 57)(18 22)(20 24)(26 30)(28 32)(33 48)(34 45)(35 42)(36 47)(37 44)(38 41)(39 46)(40 43)(50 54)(52 56)
(1 10)(2 64)(3 12)(4 58)(5 14)(6 60)(7 16)(8 62)(9 54)(11 56)(13 50)(15 52)(17 46)(18 36)(19 48)(20 38)(21 42)(22 40)(23 44)(24 34)(25 37)(26 41)(27 39)(28 43)(29 33)(30 45)(31 35)(32 47)(49 57)(51 59)(53 61)(55 63)
G:=sub<Sym(64)| (1,39,51,46)(2,40,52,47)(3,33,53,48)(4,34,54,41)(5,35,55,42)(6,36,56,43)(7,37,49,44)(8,38,50,45)(9,30,58,20)(10,31,59,21)(11,32,60,22)(12,25,61,23)(13,26,62,24)(14,27,63,17)(15,28,64,18)(16,29,57,19), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (2,6)(4,8)(9,62)(10,59)(11,64)(12,61)(13,58)(14,63)(15,60)(16,57)(18,22)(20,24)(26,30)(28,32)(33,48)(34,45)(35,42)(36,47)(37,44)(38,41)(39,46)(40,43)(50,54)(52,56), (1,10)(2,64)(3,12)(4,58)(5,14)(6,60)(7,16)(8,62)(9,54)(11,56)(13,50)(15,52)(17,46)(18,36)(19,48)(20,38)(21,42)(22,40)(23,44)(24,34)(25,37)(26,41)(27,39)(28,43)(29,33)(30,45)(31,35)(32,47)(49,57)(51,59)(53,61)(55,63)>;
G:=Group( (1,39,51,46)(2,40,52,47)(3,33,53,48)(4,34,54,41)(5,35,55,42)(6,36,56,43)(7,37,49,44)(8,38,50,45)(9,30,58,20)(10,31,59,21)(11,32,60,22)(12,25,61,23)(13,26,62,24)(14,27,63,17)(15,28,64,18)(16,29,57,19), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (2,6)(4,8)(9,62)(10,59)(11,64)(12,61)(13,58)(14,63)(15,60)(16,57)(18,22)(20,24)(26,30)(28,32)(33,48)(34,45)(35,42)(36,47)(37,44)(38,41)(39,46)(40,43)(50,54)(52,56), (1,10)(2,64)(3,12)(4,58)(5,14)(6,60)(7,16)(8,62)(9,54)(11,56)(13,50)(15,52)(17,46)(18,36)(19,48)(20,38)(21,42)(22,40)(23,44)(24,34)(25,37)(26,41)(27,39)(28,43)(29,33)(30,45)(31,35)(32,47)(49,57)(51,59)(53,61)(55,63) );
G=PermutationGroup([[(1,39,51,46),(2,40,52,47),(3,33,53,48),(4,34,54,41),(5,35,55,42),(6,36,56,43),(7,37,49,44),(8,38,50,45),(9,30,58,20),(10,31,59,21),(11,32,60,22),(12,25,61,23),(13,26,62,24),(14,27,63,17),(15,28,64,18),(16,29,57,19)], [(1,3,5,7),(2,4,6,8),(9,11,13,15),(10,12,14,16),(17,19,21,23),(18,20,22,24),(25,27,29,31),(26,28,30,32),(33,35,37,39),(34,36,38,40),(41,43,45,47),(42,44,46,48),(49,51,53,55),(50,52,54,56),(57,59,61,63),(58,60,62,64)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(2,6),(4,8),(9,62),(10,59),(11,64),(12,61),(13,58),(14,63),(15,60),(16,57),(18,22),(20,24),(26,30),(28,32),(33,48),(34,45),(35,42),(36,47),(37,44),(38,41),(39,46),(40,43),(50,54),(52,56)], [(1,10),(2,64),(3,12),(4,58),(5,14),(6,60),(7,16),(8,62),(9,54),(11,56),(13,50),(15,52),(17,46),(18,36),(19,48),(20,38),(21,42),(22,40),(23,44),(24,34),(25,37),(26,41),(27,39),(28,43),(29,33),(30,45),(31,35),(32,47),(49,57),(51,59),(53,61),(55,63)]])
38 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 4E | ··· | 4O | 8A | ··· | 8P |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 1 | 1 | 1 | 1 | 4 | ··· | 4 | 4 | ··· | 4 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | - | |||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | C4 | C4 | C4 | 2+ 1+4 | 2- 1+4 | Q8○M4(2) |
kernel | C42.310C23 | C4⋊M4(2) | C42.6C22 | C42.6C4 | C42.7C22 | C8⋊9D4 | C8⋊6D4 | C8⋊4Q8 | C23.36C23 | C4⋊D4 | C22⋊Q8 | C22.D4 | C4.4D4 | C42.C2 | C42⋊2C2 | C4 | C4 | C2 |
# reps | 1 | 1 | 2 | 1 | 2 | 4 | 2 | 2 | 1 | 2 | 2 | 4 | 2 | 2 | 4 | 1 | 1 | 4 |
Matrix representation of C42.310C23 ►in GL8(𝔽17)
1 | 0 | 0 | 15 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 4 | 0 | 0 | 0 | 0 |
13 | 16 | 0 | 4 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 8 | 1 | 0 |
0 | 0 | 0 | 0 | 15 | 0 | 0 | 16 |
13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 13 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 13 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
3 | 0 | 4 | 10 | 0 | 0 | 0 | 0 |
3 | 0 | 14 | 16 | 0 | 0 | 0 | 0 |
2 | 12 | 9 | 14 | 0 | 0 | 0 | 0 |
3 | 2 | 2 | 5 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 6 | 4 | 1 | 0 |
0 | 0 | 0 | 0 | 10 | 13 | 2 | 8 |
0 | 0 | 0 | 0 | 13 | 9 | 3 | 2 |
0 | 0 | 0 | 0 | 7 | 4 | 16 | 12 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
13 | 0 | 16 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 5 | 9 | 16 | 0 |
0 | 0 | 0 | 0 | 9 | 3 | 0 | 16 |
13 | 0 | 15 | 0 | 0 | 0 | 0 | 0 |
16 | 0 | 4 | 1 | 0 | 0 | 0 | 0 |
16 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 15 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 13 | 0 | 0 |
0 | 0 | 0 | 0 | 10 | 4 | 0 | 16 |
0 | 0 | 0 | 0 | 2 | 15 | 16 | 0 |
G:=sub<GL(8,GF(17))| [1,0,13,1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,15,4,4,16,0,0,0,0,0,0,0,0,1,4,1,15,0,0,0,0,0,16,8,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16],[13,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[3,3,2,3,0,0,0,0,0,0,12,2,0,0,0,0,4,14,9,2,0,0,0,0,10,16,14,5,0,0,0,0,0,0,0,0,6,10,13,7,0,0,0,0,4,13,9,4,0,0,0,0,1,2,3,16,0,0,0,0,0,8,2,12],[1,0,13,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,5,9,0,0,0,0,0,1,9,3,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16],[13,16,16,0,0,0,0,0,0,0,0,1,0,0,0,0,15,4,4,16,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,16,10,2,0,0,0,0,15,13,4,15,0,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0] >;
C42.310C23 in GAP, Magma, Sage, TeX
C_4^2._{310}C_2^3
% in TeX
G:=Group("C4^2.310C2^3");
// GroupNames label
G:=SmallGroup(128,1727);
// by ID
G=gap.SmallGroup(128,1727);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,1430,891,675,1018,80,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=b^4=d^2=e^2=1,c^2=b,a*b=b*a,a*c=c*a,d*a*d=a^-1,e*a*e=a*b^2,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d=b^2*c,e*c*e=a^2*b^2*c,e*d*e=a^2*d>;
// generators/relations